Automatic Localization and Identification of Vertebrae in Arbitrary Field-of-View CT Scans
نویسندگان
چکیده
This paper presents a new method for automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. No assumptions are made about which section of the spine is visible or to which extent. Thus, our approach is more general than previous work while being computationally efficient. Our algorithm is based on regression forests and probabilistic graphical models. The discriminative, regression part aims at roughly detecting the visible part of the spine. Accurate localization and identification of individual vertebrae is achieved through a generative model capturing spinal shape and appearance. The system is evaluated quantitatively on 200 CT scans, the largest dataset reported for this purpose. We obtain an overall median localization error of less than 6mm, with an identification rate of 81%.
منابع مشابه
Vertebrae Localization in Pathological Spine CT via Dense Classification from Sparse Annotations
Accurate localization and identification of vertebrae in spinal imaging is crucial for the clinical tasks of diagnosis, surgical planning, and post-operative assessment. The main difficulties for automatic methods arise from the frequent presence of abnormal spine curvature, small field of view, and image artifacts caused by surgical implants. Many previous methods rely on parametric models of ...
متن کاملAutomatic localization of target vertebrae in spine surgery using fast CT-to-fluoroscopy (3D-2D) image registration
Localization of target vertebrae is an essential step in minimally invasive spine surgery, with conventional methods relying on “level counting” – i.e., manual counting of vertebrae under fluoroscopy starting from readily identifiable anatomy (e.g., the sacrum). The approach requires an undesirable level of radiation, time, and is prone to counting errors due to the similar appearance of verteb...
متن کاملKohonen Self Organizing for Automatic Identification of Cartographic Objects
Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...
متن کاملProstate segmentation and lesions classification in CT images using Mask R-CNN
Purpose: Non-cancerous prostate lesions such as prostate calcification, prostate enlargement, and prostate inflammation cause too many problems for men’s health. This research proposes a novel approach, a combination of image processing techniques and deep learning methods for classification and segmentation of the prostate in CT-scan images by considering the experienced physicians’ reports. ...
متن کاملEvaluation of Factors Affecting Absorbed Dose, Optimization Methods and Patient Dose Reduction in Dental Cone Beam CT (CBCT)
Introduction: Nowadays the use of cone beam computed tomography in dental imaging is increasing, although this method has a much lower dose than conventional CT scans, it delivers a higher dose than the panoramic and periapical patients therefore, , the aim of this study was to investigate the factors affecting the patients' dose in dental CBCTs and methods of optimizing and reducing the patien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 15 Pt 3 شماره
صفحات -
تاریخ انتشار 2012